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Abstract

We discuss statistical and computational aspects of inverse or parameter estima-
tion problems based on Ordinary Least Squares and Generalized Least Squares with
appropriate corresponding data noise assumptions of constant variance and noncon-
stant variance (relative error), respectively. Among the topics included here are math-
ematical model, statistical model and data assumptions, and some techniques (residual
plots, sensitivity analysis, model comparison tests) for verifying these. The ideas are
illustrated throughout with the popular logistic growth model of Verhulst and Pearl
as well as with a recently developed population level model of pneumococcal disease
spread.

Keywords: Inference, least squares inverse problems, parameter estimation, sensi-
tivity and generalized sensitivity functions.

1 Introduction

In this Chapter we discuss mathematical and statistical aspects of inverse or parameter
estimation problems. While we briefly discuss maximum likelihood estimators (MLE), our
focus here will be on ordinary least squares (OLS) and generalized least squares (GLS) estima-
tion formulations and issues related to use of these techniques in practice. While we choose a
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general nonlinear ordinary differential equation mathematical model to discuss concepts and
ideas, the discussions are also applicable to partial differential equation models and other
deterministic dynamical systems. As we shall explain, the choice of an appropriate statisti-
cal model is of critical importance, and we discuss at length the difference between constant
variance and nonconstant variance noise in the observation process, the consequences for
incorrect choices in this regard, and computational techniques for investigating whether a
good decision has been made. In particular, we illustrate use of residual plots to suggest
whether or not a correct statistical model has been specified in an inverse problem formu-
lation. We illustrate these and other techniques with examples including the well known
Verhulst-Pearl logistic population model and a specific epidemiological model (a pneumo-
coccal disease dynamics model). We discuss the use of sensitivity equations coupled with the
asymptotic theory for sampling distributions and the computation of associated covariances,
standard errors and confidence intervals for the estimators of model parameters. We also
discuss sensitivity functions (traditional and generalized) and their emerging use in design of
experiments for data specific to models and mechanism investigation. Traditional sensitivity
involves sensitivity of outputs to parameters while the recent concept of generalized sensi-
tivity in inverse problems pertains to sensitivity of parameters (to be estimated) to data or
observations. That is, generalized sensitivity quantifies the relevance of data measurements
for identification of parameters in a typical parameter estimation problem. In a final section
we present and illustrate some methods for model comparison.

2 Parameter Estimation: MLE, OLS, and GLS

2.1 The Underlying Mathematical and Statistical Models

We consider inverse or parameter estimation problems in the context of a parameterized
(with vector parameter ~θ) dynamical system or mathematical model

d~x

dt
(t) = ~g(t, ~x(t), ~θ) (1)

with observation process
~y(t) = C~x(t; ~θ). (2)

Following usual convention (which agrees with the data usually available from experiments),
we assume a discrete form of the observations in which one has n longitudinal observations
corresponding to

~y(tj) = C~x(tj; ~θ), j = 1, . . . , n. (3)

In general the corresponding observations or data {~yj} will not be exactly ~y(tj). Because of
the nature of the phenomena leading to this discrepancy, we treat this uncertainty pertaining
to the observations with a statistical model for the observation process.
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2.2 Description of Statistical Model

In our discussions here we consider a statistical model of the form

~Yj = ~f(tj, ~θ0) + ~ǫj, j = 1, . . . , n, (4)

where ~f(tj, ~θ) = C~x(tj; ~θ), j = 1, . . . , n, corresponds to the solution of the mathematical

model (1) at the jth covariate for a particular vector of parameters ~θ ∈ Rp, ~x ∈ RN , ~f ∈ Rm,

and C is an m × N matrix. The term ~θ0 represents the “truth” or the parameters that
generate the observations {~Yj}n

j=1. (The existence of a truth parameter ~θ0 is standard in
statistical formulations and this along with the assumption that the means E[~ǫj] are zero
yields implicitly that the (1) is a correct description of the process being modeled.) The terms
~ǫj are random variables which can represent measurement error, “system fluctuations” or

other phenomena that cause observations to not fall exactly on the points ~f(tj, ~θ) from the

smooth path ~f(t, ~θ). Since these fluctuations are unknown to the modeler, we will assume ~ǫj
is generated from a probability distribution (with mean zero throughout our discussions) that
reflects the assumptions regarding these phenomena. For instance, in a statistical model for
pharmacokinetics of drug in human blood samples, a natural distribution for ~ǫ = (ǫ1, . . . , ǫn)T

might be a multivariate normal distribution. In other applications the distribution for ~ǫmight
be much more complicated [22].

The purpose of our presentation here is to discuss methodology related to the estima-
tion of the true value of the parameters ~θ0 from a set Θ of admissible parameters, and its
dependence on what is assumed about the variance var(~ǫj) of the error ~ǫj. We discuss two

inverse problem methodologies that can be used to calculate estimates θ̂ for ~θ0: the ordinary
least-squares (OLS) and generalized least-squares (GLS) formulations as well as the popular
maximum likelihood estimate (MLE) formulation in the case one assumes the distributions
of the error process {~ǫj} are known.

2.3 Known error processes: Normally distributed error

In the introduction of the statistical model we initially made no mention of the probability
distribution that generates the error ~ǫj. In many situations one readily assumes that the
errors ~ǫj = 1, . . . , n, are independent and identically distributed (we make the standing
assumptions of independence across j throughout our discussions in this Chapter). We
discuss a case where one is able to make further assumptions on the error, namely that
the distribution is known. In this case, maximum likelihood techniques may be used. We
discuss first one such case for a scalar observation system, i.e., m = 1. If, in addition, there
is sufficient evidence to suspect the error is generated by a normal distribution then we may
be willing to assume ǫj ∼ N (0, σ2

0), and hence Yj ∼ N (f(tj, ~θ0), σ
2
0). We can then obtain an

expression for determining ~θ0 and σ0 by seeking the maximum over (~θ, σ2) ∈ Θ × (0,∞) of
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the likelihood function for ǫj = Yj − f(tj, ~θ) which is defined by

L(~θ, σ2|~Y ) =
n
∏

j=1

1√
2πσ2

exp{− 1

2σ2
[Yj − f(tj, ~θ)]

2}. (5)

The resulting solutions θMLE and σ2
MLE

are the maximum likelihood estimators (MLEs) for ~θ0

and σ2
0, respectively. We point out that these solutions θMLE = θn

MLE
(~Y ) and σ2

MLE
= σ2 n

MLE
(~Y )

are random variables by virtue of the fact that ~Y is a random variable. The corresponding
maximum likelihood estimates are obtained by maximizing (5) with ~Y = (Y1, . . . , Yn)T

replaced by a given realization ~y = (y1, . . . , yn)T and will be denoted by θ̂MLE = θ̂n
MLE

and
σ̂MLE = σ̂n

MLE
respectively. In our discussions here and below, almost every quantity of interest

is dependent on n, the size of the set of observations or the sampling size. On occasion we
will express this dependence explicitly by use of superscripts or subscripts, especially when
we wish to remind the reader of this dependence. However, for notational convenience we
will often suppress the notation of explicit dependence on n.

Maximizing (5) is equivalent to maximizing the log likelihood

logL(~θ, σ2|~Y ) = −n
2

log(2π) − n

2
log σ2 − 1

2σ2

n
∑

j=1

[Yj − f(tj, ~θ)]
2. (6)

We determine the maximum of (6) by differentiating with respect to ~θ (with σ2 fixed) and

with respect to σ2 (with ~θ fixed), setting the resulting equations equal to zero and solving

for ~θ and σ2. With σ2 fixed we solve ∂

∂~θ
logL(~θ, σ2|~Y ) = 0 which is equivalent to

n
∑

j=1

[Yj − f(tj, ~θ)]∇f(tj, ~θ) = 0, (7)

where as usual ∇f = ∂

∂~θ
f = f~θ. We see that solving (7) is the same as the least squares

optimization

θMLE(~Y ) = arg min
~θ∈Θ

J(~Y , ~θ) = arg min
~θ∈Θ

n
∑

j=1

[Yj − f(tj, ~θ)]
2. (8)

We next fix ~θ to be θMLE and solve ∂
∂σ2 logL(θMLE, σ

2|~Y ) = 0, which yields

σ2
MLE

(~Y ) =
1

n
J(~Y , θMLE). (9)

Note that we can solve for θMLE and σ2
MLE

separately – a desirable feature, but one that does
not arise in more complicated formulations discussed below. The 2nd derivative test (which
is omitted here) verifies that the expressions above for θMLE and σ2

MLE
do indeed maximize

(6).
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If, however, we have a vector of observations for the jth covariate tj then the statistical
model is reformulated as

~Yj = ~f(tj, ~θ0) + ~ǫj (10)

where ~f ∈Rm and

V0 = var(~ǫj) = diag(σ2
0,1, . . . , σ

2
0,m) (11)

for j = 1, . . . , n. In this setting we have allowed for the possibility that the observation
coordinates Y i

j may have different constant variances σ2
0,i, i.e., σ2

0,i does not necessarily have
to equal σ2

0,k. If (again) there is sufficient evidence to claim the errors are independent and
identically distributed and generated by a normal distribution then ~ǫj ∼ Nm(0, V0). We thus

can obtain the maximum likelihood estimators θMLE({~Yj}) and VMLE({~Yj}) for θ0 and V0 by

determining the maximum of the log of the likelihood function for ~ǫj = ~Yj − ~f(tj, ~θ) defined
by

logL(~θ, V |{Y 1
j , . . . , Y

m
j }) = −n

2

m
∑

i=1

log σ2
0,i −

1

2

m
∑

i=1

1

σ2
0,i

n
∑

j=1

[Y i
j − f i(tj, ~θ)]

2

= −n
2

m
∑

i=1

log σ2
0,i −

n
∑

j=1

[~Yj − ~f(tj, ~θ)]
TV −1[~Yj − ~f(tj, ~θ)].

Using arguments similar to those given for the scalar case, we determine the maximum
likelihood estimators for ~θ0 and V0 to be

θMLE = arg min
~θ∈Θ

n
∑

j=1

[~Yj − ~f(tj, ~θ)]
TV −1

MLE
[~Yj − ~f(tj, ~θ)] (12)

VMLE = diag

(

1

n

n
∑

j=1

[~Yj − ~f(tj, θMLE)][~Yj − ~f(tj, θMLE)]
T

)

. (13)

Unfortunately, this is a coupled system, which requires some care when solving numerically.
We will discuss this issue further in Sections 2.4.2 and 2.4.5 below.

2.4 Unspecified Error Distributions and Asymptotic Theory

In Section 2.3 we examined the estimates of ~θ0 and V0 under the assumption that the error
is normally distributed, independent and constant longitudinally. But what if it is suspected
that the error is not normally distributed, or the error distribution is unknown to the modeler
beyond the assumptions on E[~Yj] embodied in the model and the assumptions made on

var(~ǫj) (as in most applications)? How should we proceed in estimating ~θ0 and σ0 (or V0)
in these circumstances? In this section we will review two estimation procedures for such
situations: ordinary least squares (OLS) and generalized least squares (GLS).

5



2.4.1 Ordinary Least Squares (OLS)

The statistical model in the scalar case takes the form

Yj = f(tj, ~θ0) + ǫj (14)

where the variance var(ǫj) = σ2
0 is assumed constant in longitudinal data (note that the

error’s distribution is not specified). We also note that the assumption that the observation
errors are uncorrelated across j (i.e., time) may be a reasonable one when the observations
are taken with sufficient intermittency or when the primary source of error is measurement
error. If we define

θOLS(~Y ) = θn
OLS

(~Y ) = arg min
~θ∈Θ

n
∑

j=1

[Yj − f(tj, ~θ)]
2 (15)

then θOLS can be viewed as minimizing the distance between the data and model where all
observations are treated as of equal importance. We note that minimizing in (15) corresponds

to solving for ~θ in

n
∑

j=1

[Yj − f(tj, ~θ)]∇f(tj, ~θ) = 0. (16)

We point out that θOLS is a random variable (ǫj = Yj − f(tj, ~θ) is a random variable); hence
if {yj}n

j=1 is a realization of the random process {Yj}n
j=1 then solving

θ̂OLS = θ̂n
OLS

= arg min
~θ∈Θ

n
∑

j=1

[yj − f(tj, ~θ)]
2 (17)

provides a realization for θOLS. (A remark on notation: for a random variable or estimator θ
we will always denote a corresponding realization or estimate with an over hat, e.g., θ̂ is an
estimate for θ.)

Noting that

σ2
0 =

1

n
E[

n
∑

j=1

[Yj − f(tj, ~θ0)]
2] (18)

suggests that once we have solved for θOLS in (15), we may obtain an estimate σ̂2
OLS

= σ̂2 n
MLE

for σ2
0.

Even though the error’s distribution is not specified we can use asymptotic theory to
approximate the mean and variance of the random variable θOLS [31]. As will be explained
in more detail below, as n→ ∞, we have that

θOLS = θn
OLS

∼ Np(~θ0,Σ
n
0 ) ≈ Np(~θ0, σ

2
0[χ

nT (~θ0)χ
n(~θ0)]

−1) (19)
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where the sensitivity matrix χ(~θ) = χn(~θ) = {χn
jk} is defined as

χn
jk(
~θ) =

∂f(tj, ~θ)

∂~θk

, j = 1, . . . , n, k = 1, . . . , p,

and
Σn

0 ≡ σ2
0[nΩ0]

−1 (20)

with

Ω0 ≡ lim
n→∞

1

n
χnT (~θ0)χ

n(~θ0), (21)

where the limit is assumed to exist–see [31]. However, ~θ0 and σ2
0 are generally unknown, so

one usually will instead use the realization ~y = (y1, . . . , yn)T of the random process ~Y to
obtain the estimate

θ̂OLS = arg min
~θ∈Θ

n
∑

j=1

[yj − f(tj, ~θ)]
2 (22)

and the bias adjusted estimate

σ̂2
OLS

=
1

n− p

n
∑

j=1

[yj − f(tj, θ̂)]
2 (23)

to use as an approximation in (19).
We note that (23) represents the estimate for σ2

0 of (18) with the factor 1
n

replaced by
the factor 1

n−p
(in the linear case the estimate with 1

n
can be shown to be biased downward

and the same behavior can be observed in the general nonlinear case– see Chap. 12 of [31]
and p. 28 of [22]). We remark that (18) is true even in the general nonlinear case (it does
not rely on any asymptotic theories although it does depend on the assumption of constant
variance being correct).

Both θ̂ = θ̂OLS and σ̂2 = σ̂2
OLS

will then be used to approximate the covariance matrix

Σn
0 ≈ Σ̂n ≡ σ̂2[χnT (θ̂)χn(θ̂)]−1. (24)

We can obtain the standard errors SE(θ̂OLS,k) (discussed in more detail in the next section) for

the kth element of θ̂OLS by calculating SE(θ̂OLS,k) ≈
√

Σ̂n
kk. Also note the similarity between

the MLE equations (8) and (9), and the scalar OLS equations (22) and (23). That is, under
a normality assumption for the error, the MLE and OLS formulations are equivalent.

If, however, we have a vector of observations for the jth covariate tj and we assume the
variance is still constant in longitudinal data, then the statistical model is reformulated as

~Yj = ~f(tj, ~θ0) + ~ǫj (25)
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where ~f ∈Rm and

V0 = var(~ǫj) = diag(σ2
0,1, . . . , σ

2
0,m) (26)

for j = 1, . . . , n. Just as in the MLE case we have allowed for the possibility that the
observation coordinates Y i

j may have different constant variances σ2
0,i, i.e. σ2

0,i does not
necessarily have to equal σ2

0,k. We note that this formulation also can be used to treat the
case where V0 is used to simply scale the observations, i.e., V0 = diag(v1, . . . , vm) is known.
In this case the formulation is simply a vector OLS (sometimes also called a weighted least
squares (WLS)). The problem will consist of finding the minimizer

θOLS = arg min
~θ∈Θ

n
∑

j=1

[~Yj − ~f(tj, ~θ)]
TV −1

0 [~Yj − ~f(tj, ~θ)], (27)

where the procedure weights elements of the vector ~Yj− ~f(tj, ~θ) according to their variability.
(Some authors refer to (27) as a generalized least squares (GLS) procedure, but we will make
use of this terminology in a different formulation in subsequent discussions). Just as in the

scalar OLS case, θOLS is a random variable (again because ~ǫj = ~Yj − ~f(tj, ~θ) is); hence if

{~yj}n
j=1 is a realization of the random process {~Yj}n

j=1 then solving

θ̂OLS = arg min
~θ∈Θ

n
∑

j=1

[~yj − ~f(tj, ~θ)]
TV −1

0 [~yj − ~f(tj, ~θ)] (28)

provides an estimate (realization) θ̂ = θ̂OLS for θOLS. By the definition of variance

V0 = diag E

(

1

n

n
∑

j=1

[~Yj − ~f(tj, ~θ0)][~Yj − ~f(tj, ~θ0)]
T

)

,

so an unbiased estimate of V0 for the realization {~yj}n
j=1 is

V̂ = diag

(

1

n− p

n
∑

j=1

[~yj − ~f(tj, θ̂)][~yj − ~f(tj, θ̂)]
T

)

. (29)

However, the estimate θ̂ requires the (generally unknown) matrix V0 and V0 requires the

unknown vector ~θ0 so we will instead use the following expressions to calculate θ̂ and V̂ :

~θ0 ≈ θ̂ = arg min
~θ∈Θ

n
∑

j=1

[~yj − ~f(tj, ~θ)]
T V̂ −1[~yj − ~f(tj, ~θ)] (30)

V0 ≈ V̂ = diag

(

1

n− p

n
∑

j=1

[~yj − ~f(tj, θ̂)][~yj − ~f(tj, θ̂)]
T

)

. (31)
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Note that the expressions for θ̂ and V̂ constitute a coupled system of equations, which will
require greater effort in implementing a numerical scheme.

Just as in the scalar case we can determine the asymptotic properties of the OLS estimator
(27). As n→ ∞, θOLS has the following asymptotic properties [22, 31]:

θOLS ∼ N (~θ0,Σ
n
0 ), (32)

where

Σn
0 ≈

(

n
∑

j=1

DT
j (~θ0)V

−1
0 Dj(~θ0)

)−1

, (33)

and the m× p matrix Dj(~θ) = Dn
j (~θ) is given by









∂f1(tj ,~θ)

∂θ1

∂f1(tj ,~θ)

∂θ2
· · · ∂f1(tj ,~θ)

∂θp

...
...

...
∂fm(tj ,~θ)

∂θ1

∂fm(tj ,~θ)

∂θ2
· · · ∂fm(tj ,~θ)

∂θp









.

Since the true value of the parameters ~θ0 and V0 are unknown their estimates θ̂ and V̂ will
be used to approximate the asymptotic properties of the least squares estimator θOLS:

θOLS ∼ Np(~θ0,Σ
n
0 ) ≈ Np(θ̂, Σ̂

n) (34)

where

Σn
0 ≈ Σ̂n =

(

n
∑

j=1

DT
j (θ̂)V̂ −1Dj(θ̂)

)−1

. (35)

The standard errors can then be calculated for the kth element of θ̂OLS (SE(θ̂OLS,k)) by

SE(θ̂OLS,k) ≈
√

Σ̂kk. Again, we point out the similarity between the MLE equations (12)
and (13), and the OLS equations (30) and (31) for the vector statistical model (25).

2.4.2 Numerical Implementation of the OLS Procedure

In the scalar statistical model (14), the estimates θ̂ and σ̂ can be solved for separately (this
is also true of the vector OLS in the case V0 = σ2

0Im, where Im is the m ×m identity) and
thus the numerical implementation is straightforward - first determine θ̂OLS according to (22)
and then calculate σ̂2

OLS
according to (23). The estimates θ̂ and V̂ in the case of the vector

statistical model (25), however, require more effort since they are coupled:

θ̂ = arg min
~θ∈Θ

n
∑

j=1

[~yj − ~f(tj, ~θ)]
T V̂ −1[~yj − ~f(tj, ~θ)] (36)

V̂ = diag

(

1

n− p

n
∑

j=1

[~yj − ~f(tj, θ̂)][~yj − ~f(tj, θ̂)]
T

)

. (37)

To solve this coupled system the following iterative process will be followed:

9



1. Set V̂ (0) = I and solve for the initial estimate θ̂(0) using (36). Set k = 0.

2. Use θ̂(k) to calculate V̂ (k+1) using (37).

3. Re-estimate ~θ by solving (36) with V̂ = V̂ (k+1) to obtain θ̂(k+1).

4. Set k = k + 1 and return to 2. Terminate the process and set θ̂OLS = θ̂(k+1) when two
successive estimates for θ̂ are sufficiently close to one another.

2.4.3 Generalized Least Squares (GLS)

Although in Section 2.4.1 the error’s distribution remained unspecified, we did however
require that the error remain constant in variance in longitudinal data. That assumption
may not be appropriate for data sets whose error is not constant in a longitudinal sense. A
common relative error model that experimenters use in this instance for the scalar observation
case [22] is

Yj = f(tj, ~θ0) (1 + ǫj) (38)

where E(Yj) = f(tj, ~θ0) and var(Yj) = σ2
0f

2(tj, ~θ0) which derives from the assumptions that
E[ǫj] = 0 and var(ǫj) = σ2

0 . We will say that the variance generated in this fashion is

non-constant variance. The method we will use to estimate ~θ0 and σ2
0 can be viewed as a

particular form of the Generalized Least Squares (GLS) method.
To define the random variable θGLS the following equation must be solved for the estimator

θGLS:

n
∑

j=1

wj[Yj − f(tj, θGLS)]∇f(tj, θGLS) = 0, (39)

where Yj obeys (38) and wj = f−2(tj, θGLS). The quantity θGLS is a random variable, hence
if {yj}n

j=1 is a realization of the random process Yj then solving

n
∑

j=1

f−2(tj, θ̂)[yj − f(tj, θ̂)]∇f(tj, θ̂) = 0, (40)

for θ̂ we obtain an estimate θ̂GLS for θGLS.
The GLS estimator θGLS = θn

GLS
has the following asymptotic properties [22]:

θGLS ∼ Np(~θ0,Σ
n
0 ) (41)

where

Σn
0 ≈ σ2

0

(

F T
~θ

(~θ0)W (~θ0)F~θ(
~θ0)
)−1

, (42)

10



F~θ(
~θ) = F n

~θ
(~θ) =









∂f(t1,~θ)
∂θ1

∂f(t1,~θ)
∂θ2

· · · ∂f(t1,~θ)
∂θp

...
...

∂f(tn,~θ)
∂θ1

∂f(tn,~θ)
∂θ2

· · · ∂f(tn,~θ)
∂θp









=







∇f(t1, ~θ)
T

...

∇f(tn, ~θ)
T







and W−1(~θ) = diag
(

f 2(t1, ~θ), . . . , f
2(tn, ~θ)

)

. Note that because ~θ0 and σ2
0 are unknown, the

estimates θ̂ = θ̂GLS and σ̂2 = σ̂2
GLS

will be used in (42) to calculate

Σn
0 ≈ Σ̂n = σ̂2

(

F T
~θ

(θ̂)W (θ̂)F~θ(θ̂)
)−1

,

where [22] we take the approximation

σ2
0 ≈ σ̂2

GLS
=

1

n− p

n
∑

j=1

1

f 2(tj, θ̂)
[yj − f(tj, θ̂)]

2.

We can then approximate the standard errors of θ̂GLS by taking the square roots of the
diagonal elements of Σ̂. We will also mention that the solutions to (30) and (40) depend
upon the numerical method used to find the minimum or root, and since Σ0 depends upon the
estimate for ~θ0, the standard errors are therefore affected by the numerical method chosen.

2.4.4 GLS motivation

We note the similarity between (16) and (40). The GLS equation (40) can be motivated by
examining the weighted least squares (WLS) estimator

θWLS = arg min
~θ∈Θ

n
∑

j=1

wj[Yj − f(tj, ~θ)]
2. (43)

In many situations where the observation process is well understood, the weights {wj} may be
known. The WLS estimate can be thought of minimizing the distance between the data and
model while taking into account unequal quality of the observations [22]. If we differentiate

the sum of squares in (43) with respect to ~θ, and then choose wj = f−2(tj, ~θ), an estimate

θ̂GLS is obtained by solving
n
∑

j=1

wj[yj − f(tj, ~θ)]∇f(tj, ~θ) = 0

for ~θ. However, we note the GLS relationship (40) does not follow from minimizing the

weighted least squares with weights chosen as wj = f−2(tj, ~θ).
Another motivation for the GLS estimating equation (40) can be found in [18]. In the

text the authors claim that if the data are distributed according to the gamma distribution,
then the maximum-likelihood estimator for ~θ is the solution to

n
∑

j=1

f−2(tj, ~θ)[Yj − f(tj, ~θ)]∇f(tj, ~θ) = 0,

11



which is equivalent to (40). The connection between the MLE and our GLS method is
reassuring, but it also poses another interesting question: What if the variance of the data
is assumed to not depend on the model output f(tj, ~θ), but rather on some function g(tj, ~θ)

(i.e., var(Yj) = σ2
0g

2(tj, ~θ) = σ2
0/wj)? Is there a corresponding maximum likelihood estimator

of ~θ whose form is equivalent to the appropriate GLS estimating equation (wj = g−2(tj, ~θ))

n
∑

j=1

g−2(tj, ~θ)[Yj − f(tj, ~θ)]∇f(tj, ~θ) = 0 ? (44)

In their text, Carroll and Rupert [18] briefly describe how distributions belonging to the expo-
nential family of distributions generate maximum-likelihood estimating equations equivalent
to (44).

2.4.5 Numerical Implementation of the GLS Procedure

Recall that an estimate θ̂GLS can either be solved for directly according to (40) or iteratively
using the equations outlined in Section 2.4.3. The iterative procedure as described in [22] is
summarized below:

1. Estimate θ̂GLS by θ̂(0) using the OLS equation (15). Set k = 0.

2. Form the weights ŵj = f−2(tj, θ̂
(k)).

3. Re-estimate θ̂ by solving

θ̂(k+1) = arg min
θ∈Θ

n
∑

j=1

ŵj

(

yj − f
(

tj, ~θ
)

)2

to obtain the k + 1 estimate θ̂(k+1) for θ̂GLS.

4. Set k = k + 1 and return to 2. Terminate the process when two of the successive
estimates for θ̂GLS are sufficiently close.

We note that the above iterative procedure was formulated by minimizing (over ~θ ∈ Θ)

n
∑

j=1

f−2(tj, θ̃)[yj − f(tj, ~θ)]
2

and then updating the weights wj = f−2(tj, θ̃) after each iteration. One would hope that

after a sufficient number of iterations ŵj would converge to f−2(tj, θ̂GLS). Fortunately, under
reasonable conditions, if the process enumerated above is continued a sufficient number of
times [22], then ŵj → f−2(tj, θ̂GLS).

12



3 Computation of Σ̂n, Standard Errors and Confidence

Intervals

We return to the case of n scalar longitudinal observations and consider the OLS case of
Section 2.4.1 (the extension of these ideas to vectors is completely straight-forward). These
n scalar observations are represented by the statistical model

Yj ≡ f(tj, ~θ0) + ǫj, j = 1, 2, . . . , n, (45)

where f(tj, ~θ0) is the model for the observations in terms of the state variables and ~θ0 ∈ R
p

is a set of theoretical “true” parameter values (assumed to exist in a standard statistical
approach). We further assume that the errors ǫj, j = 1, 2, . . . , n, are independent identically
distributed (i.i.d.) random variables with mean E[ǫj] = 0 and constant variance var(ǫj) = σ2

0,

where σ2
0 is unknown. The observations Yj are then i.i.d. with mean E[Yj] = f(tj, ~θ0) and

variance var(Yj) = σ2
0.

Recall that in the ordinary least squares (OLS) approach, we seek to use a realization
{yj} of the observation process {Yj} along with the model to determine a vector θ̂n

OLS
where

θ̂n
OLS

= arg min Jn(~θ) =
n
∑

j=1

[yj − f(tj, ~θ)]
2. (46)

Since Yj is a random variable, the corresponding estimator θn = θn
OLS

(here we wish to em-
phasize the dependence on the sample size n) is also a random variable with a distribution
called the sampling distribution. Knowledge of this sampling distribution provides uncer-
tainty information (e.g., standard errors) for the numerical values of θ̂n obtained using a
specific data set {yj}. In particular, loosely speaking the sampling distribution characterizes
the distribution of possible values the estimator could take on across all possible realizations
with data of size n that could be collected. The standard errors thus approximate the extent
of variability in possible values across all possible realizations, and hence provide a measure
of the extent of uncertainty involved in estimating θ using the specific estimator and sample
size n in actual data collection.

Under reasonable assumptions on smoothness and regularity (the smoothness require-
ments for model solutions are readily verified using continuous dependence results for dif-
ferential equations in most examples; the regularity requirements include, among others,
conditions on how the observations are taken as sample size increases, i.e., as n → ∞), the
standard nonlinear regression approximation theory ([22, 26, 29], and Chapter 12 of [31])
for asymptotic (as n → ∞) distributions can be invoked. As stated above, this theory

yields that the sampling distribution for the estimator θn(~Y ), where ~Y = (Y1, . . . , Yn)T , is

approximately a p-multivariate Gaussian with mean E[θn(~Y )] ≈ ~θ0 and covariance matrix

var(θn(~Y )) ≈ Σn
0 = σ2

0[nΩ0]
−1 ≈ σ2

0[χ
nT (~θ0)χ

n(~θ0)]
−1. Here χn(~θ) = F~θ(

~θ) is the n × p
sensitivity matrix with elements

χjk(~θ) =
∂f(tj, ~θ)

∂θk

and F~θ(
~θ) ≡ (f1~θ(

~θ), . . . , fn~θ(
~θ))T ,
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where fj~θ(
~θ) = ∂f

∂~θ
(tj, ~θ). That is, for n large, the sampling distribution approximately satisfies

θn
OLS

(~Y ) ∼ Np(~θ0,Σ
n
0 ) ≈ Np(~θ0, σ

2
0[χ

nT (~θ0)χ
n(~θ0)]

−1). (47)

There are typically several ways to compute the matrix F~θ. First, the elements of the
matrix χ = (χjk) can always be estimated using the forward difference

χjk(~θ) =
∂f(tj, ~θ)

∂θk

≈ f(tj, ~θ + hk) − f(tj, ~θ)

|hk|
,

where hk is a p-vector with a nonzero entry in only the kth component. But, of course, the
choice of hk can be problematic in practice.

Alternatively, if the f(tj, ~θ) correspond to longitudinal observations ~y(tj) = C~x(tj; ~θ) of

solutions ~x ∈ R
N to a parameterized N -vector differential equation system ~̇x = ~g(t, ~x(t), ~θ)

as in (1), then one can use the N × p matrix sensitivity equations (see [4, 9] and the
references therein)

d

dt

(

∂~x

∂~θ

)

=
∂~g

∂~x

∂~x

∂~θ
+
∂~g

∂~θ
(48)

to obtain
∂f(tj, ~θ)

∂θk

= C ∂~x(tj,
~θ)

∂θk

.

Finally, in some cases the function f(tj, ~θ) may be sufficiently simple so as to allow one to
derive analytical expressions for the components of F~θ.

Since ~θ0, σ0 are unknown, we will use their estimates to make the approximation

Σn
0 ≈ σ2

0[χ
nT (~θ0)χ

n(~θ0)]
−1 ≈ Σ̂n(θ̂n

OLS
) = σ̂2[χnT (θ̂n

OLS
)χn(θ̂n

OLS
)]−1, (49)

where the approximation σ̂2 to σ2
0, as discussed earlier, is given by

σ2
0 ≈ σ̂2 =

1

n− p

n
∑

j=1

[yj − f(tj, θ̂
n
OLS

)]2. (50)

Standard errors to be used in the confidence interval calculations are thus given by SEk(θ̂
n) =

√

Σkk(θ̂n), k = 1, 2, . . . , p (see [19]).

In order to compute the confidence intervals (at the 100(1−α)% level) for the estimated
parameters in our example, we define the confidence level parameters associated with the
estimated parameters so that

P{θ̂n
k − t1−α/2SEk(θ̂

n) < θ0k < θ̂n
k + t1−α/2SEk(θ̂

n)} = 1 − α, (51)

where α ∈ [0, 1] and t1−α/2 ∈ R+. Given a small α value (e.g., α = .05 for 95% confidence
intervals), the critical value t1−α/2 is computed from the Student’s t distribution tn−p with

14



n − p degrees of freedom. The value of t1−α/2 is determined by P{T ≥ t1−α/2} = α/2
where T ∼ tn−p. In general, a confidence interval is constructed so that, if the confidence
interval could be constructed for each possible realization of data of size n that could have
been collected, 100(1 − α)% of the intervals so constructed would contain the true value
θ0k. Thus, a confidence interval provides further information on the extent of uncertainty
involved in estimating θ0 using the given estimator and sample size n.

When one is taking longitudinal samples corresponding to solutions of a dynamical sys-
tem, the n × p sensitivity matrix depends explicitly on where in time the observations are
taken when f(tj, ~θ) = Cx(tj, ~θ) as mentioned above. That is, the sensitivity matrix

χ(~θ) = F~θ(
~θ) =

(

∂f(tj, ~θ)

∂θk

)

depends on the number n and the nature (for example, how taken) of the sampling times
{tj}. Moreover, it is the matrix [χTχ]−1 in (49) and the parameter σ̂2 in (50) that ultimately
determine the standard errors and confidence intervals. At first investigation of (50), it
appears that an increased number n of samples might drive σ̂2 (and hence the SE) to zero
as long as this is done in a way to maintain a bound on the residual sum of squares in (50).
However, we observe that the condition number of the matrix χTχ is also very important
in these considerations and increasing the sampling could potentially adversely affect the
inversion of χTχ. In this regard, we note that among the important hypotheses in the
asymptotic statistical theory (see p. 571 of [31]) is the existence of a matrix function Ω(~θ)
such that

1

n
χnT (~θ)χn(~θ) → Ω(~θ) uniformly in ~θ as n→ ∞,

with Ω0 = Ω(~θ0) a nonsingular matrix. It is this condition that is rather easily violated in
practice when one is dealing with data from differential equation systems, especially near an
equilibrium or steady state (see the examples of [4]).

All of the above theory readily generalizes to vector systems with partial, non-scalar
observations. Suppose now we have the vector system (1) with partial vector observations
given by (5.1), that is, we have m coordinate observations where m ≤ N . In this case, we
have

d~x

dt
(t) = ~g(t, ~x(t), ~θ) (52)

and
~yj = ~f(tj, ~θ0) + ~ǫj = C~x(tj, ~θ0) + ~ǫj, (53)

where C is an m×N matrix and ~f ∈ Rm, ~x ∈ RN . As already explained in Section 2.4.1, if we
assume that different observation coordinates fi may have different variances σ2

i associated
with different coordinates of the errors ǫj, then we have that ~ǫj is an m-dimensional random
vector with

E[~ǫj] = 0, var(~ǫj) = V0,
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where V0 = diag(σ2
0,1, ..., σ

2
0,m), and we may follow a similar asymptotic theory to calculate

approximate covariances, standard errors and confidence intervals for parameter estimates.
Since the computations for standard errors and confidence intervals (and also model

comparison tests) depend on an asymptotic limit distribution theory, one should interpret the
findings as sometimes crude indicators of uncertainty inherent in the inverse problem findings.
Nonetheless, it is useful to consider the formal mathematical requirements underpinning these
techniques.

Among the more readily checked hypotheses are those of the statistical model requiring
that the errors ǫj, j = 1, 2, . . . , n, are independent and identically distributed (i.i.d.) random
variables with mean E[ǫj] = 0 and constant variance var(ǫj) = σ2

0.

• After carrying out the estimation procedures, one can readily plot the residuals rj =

yj − f(tj, θ̂
n
OLS

) vs. time tj and the residuals vs. the resulting estimated model/ obser-

vation f(tj, θ̂
n
OLS

) values. A random pattern for the first is strong support for validity
of independence assumption; a non increasing, random pattern for latter suggests as-
sumption of constant variance may be reasonable.

• The underlying assumption that sampling size n must be large (recall the theory is
asymptotic in that it holds as n→ ∞) is not so readily “verified”–often ignored (albeit
at the user’s peril in regard to the quality of the uncertainty findings).

Often asymptotic results provide remarkably good approximations to the true sampling
distributions for finite n. However, in practice there is no way to ascertain whether theory
holds for a specific example.

4 Investigation of Statistical Assumptions

The form of error in the data (which of course is rarely known) dictates which method from
those discussed above one should choose. The OLS method is most appropriate for constant
variance observations of the form Yj = f(tj, ~θ0) + ǫj whereas the GLS should be used for

problems in which we have nonconstant variance observations Yj = f(tj, ~θ0)(1 + ǫj).
We emphasize that in order to obtain the correct standard errors in an inverse problem

calculation, the OLS method (and corresponding asymptotic formulas) must be used with
constant variance generated data, while the GLS method (and corresponding asymptotic
formulas) should be applied to nonconstant variance generated data.

Not doing so can lead to incorrect conclusions. In either case, the standard error cal-
culations are not valid unless the correct formulas (which depends on the error structure)
are employed. Unfortunately, it is very difficult to ascertain the structure of the error, and
hence the correct method to use, without a priori information. Although the error struc-
ture cannot definitively be determined, the two residuals tests can be performed after the
estimation procedure has been completed to assist in concluding whether or not the correct
asymptotic statistics were used.
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4.1 Residual Plots

One can carry out simulation studies with a proposed mathematical model to assist in
understanding the behavior of the model in inverse problems with different types of data with
respect to mis-specification of the statistical model. For example, we consider a statistical
model with constant variance noise

Yj = f(tj, ~θ0) +
k

100
ǫj, Var(Yj) =

k2

10000
σ2,

and nonconstant variance noise

Yj = f(tj, ~θ0)(1 +
k

100
ǫj), Var(Yj) =

k2

10000
σ2 f 2(tj, ~θ0).

We can obtain a data set by considering a realization {yj}n
j=1 of the random process {Yj}n

j=1

through a realization of {ǫj}n
j=1 and then calculate an estimate θ̂ of ~θ0 using the OLS or GLS

procedure.
We will then use the residuals rj = yj − f(tj, θ̂) to test whether the data set is i.i.d. and

possesses the assumed variance structure. If a data set has constant variance error then

Yj = f(tj, ~θ0) + ǫj or ǫj = Yj − f(tj, ~θ0).

Since it is assumed that the error ǫj is i.i.d. a plot of the residuals rj = yj − f(tj, θ̂) vs. tj
should be random. Also, the error in the constant variance case does not depend on f(tj, θ0),

and so a plot of the residuals rj = yj −f(tj, θ̂) vs. f(tj, θ̂) should also be random. Therefore,

if the error has constant variance then a plot of the residuals rj = yj − f(tj, θ̂) against tj
and against f(tj, θ̂)) should both be random. If not, then the constant variance assumption
is suspect.

We turn next to questions of what to expect if this residual test is applied to a data set
that has nonconstant variance generated error. That is, we wish to investigate what happens
if the data are incorrectly assumed to have constant variance error when in fact they have
nonconstant variance error. Since in the nonconstant variance example, Rj = Yj−f(tj, ~θ0) =

f(tj, ~θ0) ǫj depends upon the deterministic model f(tj, ~θ0), we should expect that a plot of

the residuals rj = yj −f(tj, θ̂) vs. tj should exhibit some type of pattern. Also, the residuals

actually depend on f(tj, θ̂) in the nonconstant variance case, and so as f(tj, θ̂) increases the

variation of the residuals rj = yj − f(tj, θ̂) should increase as well. Thus rj = yj − f(tj, θ̂)

vs. f(tj, θ̂) should have a fan shape in the nonconstant variance case.
In summary, if a data set has nonconstant variance generated data, then

Yj = f(tj, ~θ0) + f(tj, ~θ0) ǫj or ǫj =
Yj − f(tj, ~θ0)

f(tj, ~θ0)
.

If the distribution ǫj is i.i.d., then a plot of the modified residuals rm
j = (yj−f(tj, θ̂))/f(tj, θ̂)

vs. tj should be random in nonconstant variance generated data. A plot of rm
j = (yj −

f(tj, θ̂))/f(tj, θ̂) vs. f(tj, θ̂) should also be random.
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Another question of interest concerns the case in which the data are incorrectly assumed
to have nonconstant variance error when in fact they have constant variance error. Since
Yj − f(tj, ~θ0) = ǫj in the constant variance case, we should expect that a plot of rm

j =

(yj − f(tj, θ̂))/f(tj, θ̂) vs. tj as well as that for rm
j = (yj − f(tj, θ̂))/f(tj, θ̂) vs. f(tj, θ̂) will

possess some distinct pattern.
Two further issues regarding residual plots: As we shall see by examples, some data sets

might have values that are repeated or nearly repeated a large number of times (for example
when sampling near an equilibrium for the mathematical model or when sampling a periodic
system over many periods). If a certain value is repeated numerous times (e.g., frepeat) then

any plot with f(tj, θ̂) along the horizontal axis should have a cluster of values along the
vertical line x = frepeat. This feature can easily be removed by excluding the data points
corresponding to these high frequency values (or simply excluding the corresponding points
in the residual plots). Another common technique when plotting against model predictions
is to plot against logf(tj, θ̂) instead of f(tj, θ̂) itself which has the effect of “stretching out”

plots at the ends. Also, note that the model value f(tj, θ̂) could possibly be zero or very near

zero, in which case the modified residuals Rm
j =

Yj−f(tj ,θ̂)

f(tj ,θ̂)
would be undefined or extremely

large. To remedy this situation one might exclude values very close to zero (in either the
plots or in the data themselves). We chose here to reduce the data sets (although this
sometimes could lead to a deterioration in the estimation results obtained). In our examples
below, estimates obtained using a truncated data set will be denoted by θ̂tcv

OLS
for constant

variance data and θ̂tncv
OLS

for nonconstant variance data.

4.2 Example using Residual Plots

We illustrate residual plot techniques by exploring a widely studied model - the logistic
population growth model of Verhulst/Pearl

ẋ = rx(1 − x

K
), x(0) = x0. (54)

Here K is the population’s carrying capacity, r is the intrinsic growth rate and x0 is the
initial population size. This well-known logistic model describes how populations grow when
constrained by resources or competition. The closed form solution of this simple model is
given by

x(t) =
K x0e

rt

K + x0 (ert − 1)
. (55)

The left plot in Figure 1 depicts the solution of the logistic model for K = 17.5, r = .7 and
x0 = 1 for 0 ≤ t ≤ 25. If high frequency repeated or nearly repeated values (i.e., near the
initial value x0 or near the the asymptote x = K) are removed from the original plot, the
resulting truncated plot is given in the right panel of Figure 1 (there are no near zero values
for this function).
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Figure 1: Original and truncated logistic curve with K = 17.5, r = .7 and x0 = .1.
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For this example we generated both constant variance and nonconstant variance noisy
data ( we sampled from N (0, 1) random variables to obtain realizations of ǫj ) and obtained

estimates θ̂ of ~θ0 = (K, r, x0) by applying either the OLS or GLS method to a realization

{yj}n
j=1 of the random process {Yj}n

j=1. The initial guesses ~θinit = θ̂(0) along with estimates
for each method and error structure are given in Tables 1-4 (the superscript tcv and tncv
denote the estimate obtained using the truncated data set). As expected, both methods do

a good job of estimating ~θ0, however the error structure was not always correctly specified
since incorrect asymptotic formulas were used in some cases.

Table 1: Estimation using the OLS procedure with constant variance data for k = 5.

k ~θinit
~θ0 θ̂cv

OLS
SE(θ̂cv

OLS
) θ̂tcv

OLS
SE(θ̂tcv

OLS
)

5 17 17.5 1.7500e+001 1.5800e-003 1.7494e+001 6.4215e-003
5 .8 .7 7.0018e-001 4.2841e-004 7.0062e-001 6.5796e-004
5 1.2 .1 9.9958e-002 3.1483e-004 9.9702e-002 4.3898e-004

Table 2: Estimation using the GLS procedure with constant variance data for k = 5.

k ~θinit
~θ0 θ̂cv

GLS
SE(θ̂cv

GLS
) θ̂tcv

GLS
SE(θ̂tcv

GLS
)

5 17 17.5 1.7500e+001 1.3824e-004 1.7494e+001 9.1213e-005
5 .8 .7 7.0021e-001 7.8139e-005 7.0060e-001 1.6009e-005
5 1.2 .1 9.9938e-002 6.6068e-005 9.9718e-002 1.2130e-005
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Table 3: Estimation using the OLS procedure with nonconstant variance data for k = 5.

k ~θinit
~θ0 θ̂ncv

OLS
SE(θ̂ncv

OLS
) θ̂tncv

OLS
SE(θ̂tncv

OLS
)

5 17 17.5 1.7499e+001 2.2678e-002 1.7411e+001 7.1584e-002
5 .8 .7 7.0192e-001 6.1770e-003 7.0955e-001 7.6039e-003
5 1.2 .1 9.9496e-002 4.5115e-003 9.4967e-002 4.8295e-003

Table 4: Estimation using the GLS procedure with nonconstant variance data for k = 5.

k ~θinit
~θ0 θ̂ncv

GLS
SE(θ̂ncv

GLS
) θ̂tncv

GLS
SE(θ̂tncv

GLS
)

5 17 17.5 1.7498e+001 9.4366e-005 1.7411e+001 3.1271e-004
5 .8 .7 7.0217e-001 5.3616e-005 7.0959e-001 5.7181e-005
5 1.2 .1 9.9314e-002 4.4976e-005 9.4944e-002 4.1205e-005

When the OLS method was applied to nonconstant variance data and the GLS method
was applied to constant variance data, the residual plots given below do reveal that the error
structure was misspecified. For instance, the plot of the residuals for θ̂ncv

OLS
given in Figures

4 and 5 reveal a fan shaped pattern, which indicates the constant variance assumption is
suspect. In addition, the plot of the residuals for θ̂cv

GLS
given in Figures 6 and 7 reveal

an inverted fan shaped pattern, which indicates the nonconstant variance assumption is
suspect. As expected, when the correct error structure is specified, the i.i.d. test and the
model dependence test each display a random pattern (Figures 2, 3 and Figures 8, 9).

Also, included in the right panel of Figures 2 - 9 are the residual plots with the truncated
data sets. In those plots only model values between one and seventeen were considered (i.e.
1 ≤ yj ≤ 17). Doing so removed the dense vertical lines in the plots with f(tj, θ̂) along the
x-axis. Nonetheless, the conclusions regarding the error structure remain the same.
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Figure 2: Residual plots: Original and truncated logistic curve for θ̂cv
OLS

with k = 5.
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Figure 3: Original and truncated logistic curve for θ̂cv
OLS

with k = 5.
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Figure 4: Original and truncated logistic curve for θ̂ncv
OLS

with k = 5.
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Figure 5: Original and truncated logistic curve for θ̂ncv
OLS

with k = 5.
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Figure 6: Original and truncated logistic curve for θ̂cv
GLS

with k = 5.
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Figure 7: Original and truncated logistic curve for θ̂cv
GLS

with k = 5.
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Figure 8: Original and truncated logistic curve for θ̂ncv
GLS

with k = 5.
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Figure 9: Original and truncated logistic curve for θ̂ncv
GLS

with k = 5.
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In addition to the residual plots, we can also compare the standard errors obtained for
each simulation. At a quick glance of Tables 1 - 4, the standard error of the parameter K in
the truncated data set is larger than the standard error of K in the original data set. This
behavior is expected. If we remove the “flat” region in the logistic curve, we actually discard
measurements with high information content about the carrying capacity K [4]. Doing so
reduces the quality of the estimator K. Another interesting observation is that the standard
errors of the GLS estimate are more optimistic than that of the OLS estimate, even when the
non-constant variance assumption is wrong. This example further solidifies the conclusion we
will make with the epidemiological model described below - before one reports an estimate
and corresponding standard errors, there needs to be some assurance that the proper error
structure has been specified.
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5 Pneumococcal Disease Dynamics Model

To explore these ideas in the context of epidemiology, we discuss a population level model
of pneumococcal disease dynamics as an example. This model has previously been applied
to surveillance data available via the Australian National Notifiable Diseases Surveillance
System in [32]. Monthly case notifications of invasive pneumococcal disease (IPD) and annual
vaccination information were used to estimate unknown model parameters and to assess the
impact of a newly implemented vaccination policy. Here we illustrate, with this example, the
effects of incorrect versus correct statistical models assumed to represent observed data in
reporting parameter values and their corresponding standard errors. Most importantly, we
discuss relevant residual plots and how to use these to determine if reasonable assumptions
on observed error have been made.

Figure 10: Pneumococcal infection dynamics with vaccination.
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In this model, shown in Figure 10, individuals are classified according to their epidemi-
ological status with respect to invasive pneumococcal diseases, which include pneumonia,
bacteremia, meningitis and are defined as the presence of Streptococcus pneumoniae in any
normal sterile fluid in the body. Individuals are considered susceptible, or in the S class,
in the absence of this bacteria. The E class represents individuals whose nasopharyngeal
regions are asymptomatically colonized by S. pneumoniae, a stage that is typically transient,
but always precedes infection. Should a colony of S. pneumoniae be successful in establishing
an infection, the individual then exhibits a clinical condition described above, and is then
considered infected or in the I class. We consider vaccines which prevent progression to
infection, or possibly, asymptomatic colonization. This protection is not complete, and the
efficacy with which this is accomplished is 1 − δ and 1 − ǫ, respectively. Once vaccinated,
individuals may enter any of the epidemiological states, SV , EV , and IV , although they do
so with altered rates. The model equations (for detailed derivations, see [32]) are given by
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dS

dt
= λ− βS

E + EV + I + IV
N

+ αE + γI − φS + ρSV − µS (56)

dE

dt
= βS

E + EV + I + IV
N

− αE − lκ(t)E − φE + ρEV − µE (57)

dSV

dt
= φS − ǫβSV

E + EV + I + IV
N

+ αEV + γIV − ρSV − µSV (58)

dEV

dt
= ǫβSV

E + EV + I + IV
N

− αEV + φE − ρEV − δκ(t)EV − µEV (59)

dI

dt
= lκ(t)E − (γ + η + µ)I (60)

dIV
dt

= δκ(t)EV − (γ + η + µ)IV . (61)

Seasonality of invasive pneumococcal diseases has been observed and studies support a
seasonal infection rate, κ, rather than a seasonal effective contact rate, β. Thus, we assume
the form

κ(t) = κ0 (1 + κ1 cos[ω(t− τ)]) ,

for κ(t) to reflect seasonal changes in host susceptibility to pneumococcal infection.

5.1 Statistical Models of Case Notification Data

Monthly case notifications f(tj, ~θ) are best represented as integrals of the new infection rates,

f(tj, ~θ) =

∫ tj+1

tj

[lκ(s)E(s) + δκ(s)EV (s)] ds,

(including those in the vaccinated class) over each month, since they represent the number of
cases reported during the month and do not provide any information on how long individuals
remain in an infected state. We use these data to estimate ~θ = (β, κ0, κ1)

T . Before using the
model with surveillance data, we test the model and methodology capabilities with simulated
“data”. Following the procedures in the logistic example discussions in Section 4, we generate
data according to two statistical models:

Yj = f(tj, θ0) + ǫj, (62)

Yj = f(tj, θ0)(1 + ǫj), (63)

for j = 1, ..., n, where ~θ0 are the ‘true’ values of the parameters used to generate the data.
In both (62) and (63), the ǫj are independent and identically distributed (i.i.d.) random
variables with E[ǫj] = 0 and var(ǫj) = σ2

0. In model (62), however, the residual is then

Rj = Yj − f(tj, ~θ0) = ǫj and thus Rj satisfies E[Rj] = 0 and var(Rj) = σ2
0. As before, we
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will refer to this error with constant variance, or CV. The second case, (63), has residuals

of the form Rj = Yj − f(tj, ~θ0) = ǫjf(tj, ~θ0), so the residual is actually proportional to the

model, f(tj, ~θ0), at each time point tj, and thus this is an example of error with nonconstant

variance, or NCV. We note that in this case E[Rj] = 0 and var(Rj) = σ2
0f

2(tj, ~θ0) or
Rj

f(tj ,~θ0)

has mean zero and variance σ2
0.

For illustration, we consider the same four cases as with the logistic example in Section
4:

1. OLS estimation of θ̂ using data generated by model (62) with constant variance obser-
vational error: θOLS(YCV ),

2. OLS estimation of θ̂ using data generated by model (63) with nonconstant variance
observational error: θOLS(YNCV ),

3. GLS estimation of θ̂ using data generated by model (62) with constant variance obser-
vational error: θGLS(YCV ),

4. GLS estimation of θ̂ using data generated by model (63) with nonconstant variance
observational error: θGLS(YNCV ).

We compare the parameter estimates θ̂ and standard errors SE(θ̂) obtained in each case.
Further we discuss how to interpret plots of rj = yj − f(tj, θ̂) versus tj and f(tj, θ̂) to assess
whether reasonable assumptions have been made in assuming the statistical model for the
data.

5.2 Inverse Problem Results: Simulated Data

Data were generated with n = 60 time points (equivalent to five years of data), with the set
of parameters

~θ0 =





β
κ0

κ1



 =





1.5
1.4e−3

0.55



 .

Error was added to the forward solution according to two statistical models, as described in
Section 5.1. In the case of constant variance observational error, the error is scaled to the
magnitude of the model but not in a time-dependent manner. In this case we generated noisy
data by sampling from a N (0, 1) distribution (we could of course have sampled from any
other random variable). Therefore, for constant variance error of about k% of the average

magnitude of the f(tj, ~θ0),

ǫj ∼
k

100
avgjf(tj, ~θ0)N (0, 1).

So in this case ǫj ∼ N (0, [ k
100

avgjf(tj, ~θ0)]
2) with ǫj (and also Rj) i.i.d. In the second statis-

tical model, the error depends on time and is scaled by the model at each time point, i.e.,
the error is relative. In this case the error is added to the observations by
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Table 5: Parameter estimates from data with constant variance CV error.

~θ ~θ0
~θinit θ̂OLS SE(θ̂OLS) θ̂GLS SE(θ̂GLS)

β 1.5 1.55 1.4845 0.038 1.51186 0.017
κ0 1.4e−3 1.3e−3 1.4188e−3 2.1e−4 1.3203e−3 1.2e−4

κ1 0.55 0.65 0.56203 0.050 0.56047 0.019
RSS 1.6831e4 1.722e4

Rj = f(tj, ~θ0)ǫj ∼ f(tj, ~θ0)
k

100
N (0, 1),

with ǫj ∼ N (0, [ k
100
f(tj, ~θ0)]

2), and again the ǫj are i.i.d., but now the Rj are not i.i.d. This
enables us to compare different types of error on the same scale: one independent of time
and observation magnitude, and one dependent on observation magnitude, and thus time.
With the present examples, we have taken k = 10.

The results from using an OLS and GLS estimator with data generated with constant
variance error are displayed in Table 5, and the fitted model solutions displayed in Figure
11. Both estimators do an arguably similar job at producing the true values, that is θ̂OLS

and θ̂GLS are comparably close to θ0. The standard errors SE(θ̂GLS) for the GLS estimator
however, are all smaller, and seem to indicate that the corresponding estimates are more
“reliable”. This, however, is not true because they are based on incorrect formulae, as we
shall see in our examination of the error plots for both of these cases. Note that from Figure
11 and the residual sum of squares, RSS, in both cases, there is no clear argument from
these results as to which estimator is better suited for use with the data.

Figure 11: Best fit model solutions to monthly case notifications with constant variance CV
error.
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Table 6: Parameter estimates from data with nonconstant variance NCV error.

~θ ~θ0
~θinit θ̂OLS SE(θ̂OLS) θ̂GLS SE(θ̂GLS)

β 1.5 1.55 1.4876 0.037 1.4923 0.0079
κ0 1.4e−3 1.3e−3 1.4703e−3 2.0e−4 1.4301e−3 7e−5

κ1 0.55 0.65 0.54531 0.047 0.54232 0.012
RSS 1.6692e4 1.676e4

Figure 12: Best fit model solutions to monthly case notifications with nonconstant variance
NCV error.
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When OLS and GLS estimation are each used with data with nonconstant variance error,
the parameters and standard errors in Table 6 are obtained, and the plot of these model
solutions over the generated data is given in Figure 12. Again, one estimator does not do
a clearly better job over the other in terms of predicting parameter values closer to those
used to generate the data. However, again, the standard errors from the GLS estimation
are smaller as compared to those of the OLS estimation. From this, it would seem that the
GLS estimation would always give ‘better’ parameter values, or do a better job at producing
reliable results. However, we know that in the case of constant variance error, the GLS
estimation makes some incorrect assumptions on the data generation and therefore, the
standard errors reported there would give a false sense of confidence in the values (indeed
they are based on incorrect asymptotic formulae).

5.2.1 Residual Plots

Here we illustrate use of residual plots to investigate whether our assumptions on the errors
incurred in observation of data are correct - that is, whether the ǫj are i.i.d. for all j = 1, ..., n,
and also are independent of the observation magnitude. As we have already discussed in
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Section 4, if the errors are i.i.d. then a plot of the residuals rj = yj − f(tj, θ̂) versus time
tj should show no discernible pattern. Similarly, a plot of the residual rj as a function of

the model values f(tj, θ̂) should be random if there is no relationship between these two
quantities. While use of the OLS estimation tacitly assumes the statistical model (62), and
therefore the residual is a realization of the error random variable, this is not true of the
GLS estimation. In that case, the assumed statistical model is shown in (62) with ǫj i.i.d.
but the residual rj are not i.i.d. for all j = 1, ..., n. Therefore, in the case of GLS we should

investigate plots of the the residual/model values, Rj =
Yj−f(tj ,θ0)

f(tj ,θ0)
instead of the residuals.

Figure 13: Residual (rj = yj − f(tj, θ̂)) plots of the OLS estimation with CV data (ǫj =

Yj − f(tj, ~θ0)); Left: nontruncated, Right: truncated.
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In Figure 13, we see the relationship between the residuals and time, and that between
residuals and the model values when the OLS estimation procedure is applied to data which
has been generated with constant variance error. In both the top and bottom panels on
the left, the full set of n = 60 points are used, while on the right hand side, only one
year, or n = 12 points have been used for the estimation. Both top panels show a random

31



pattern, so the errors are clearly i.i.d. But in the bottom left plot, we observe clustering of
residuals around certain model values, although there is no clear pattern in the dependent
variable, just in the independent variable, f(tj, θ̂). However, we recognize that this is due
to the seasonality of the data and model, so that at regular repeated time points over many
periods, there are going to be repeated values of the model. As evidence of this, we see
that when only one period is plotted (the bottom right panel), a random pattern is seen,
and we confirm that the errors are not dependent on the model values. Thus, if there are
vertical bands on a plot such as this, it can be attributed to certain model values repeating
and does not indicate any dependence of the error on the model value. To check, one can
simply reduce the number of data points used in the estimation so that there are few or no
repeated values.

Figure 14: Residual (rj = yj − f(tj, θ̂)) plots of the OLS estimation to NCV data (ǫj =
Yj−f(tj ,~θ0)

f(tj ,~θ0)
); Left: nontruncated, Right: truncated.
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When OLS estimation is carried out with data that has been generated according to the
statistical model (63), however, the independence of the error from time is not so clear, as

32



these graphs (Figure 14) do not show a random pattern. While there is no clear relation-
ship, there is some randomness in the residuals, and the band of residuals are tighter, not
homogeneously distributed across the plot as in Figure 13. The dependence of the residuals
on model value magnitude (seen in the bottom panels) is apparent as the rj clearly increase
with increasing model values, producing a fan shape. In this case the OLS estimation is
used incorrectly, and the residual plots exhibit a clear dependence on model values and do
not confirm independence from time.

Figure 15: Residual/Model (
rj

f(tj ,θ̂)
) plots of the GLS estimation to CV data (ǫj = Yj −

f(tj, ~θ0)); Left: nontruncated, Right: truncated.
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The GLS estimation procedure, however, gave smaller standard errors regardless of the
data set used, and therefore, more confidence in the parameter estimates. However, in Figure
15, we see evidence again of the dependence of the residuals on time and model quantities,
thus indicating that our assumptions have been incorrect for GLS estimation. In this case,
we would have assumed that the errors are proportional to the observations, thus motivating
a GLS estimator. If the variance is constant across time and model values, and the GLS
estimator is used, we should expect a systematic behavior in the residual plots. Indeed, the
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plots in Figure 15 reveal a tight band of points in the
rj

f(tj ,θ̂)
versus tj plots and the reverse

fan shape of the plot of the residual/model
rj

f(tj ,θ̂)
versus the model values f(tj, θ̂). This

indicates that the relations which give us the parameter estimates and their standard errors
no longer hold and we are essentially reporting incorrect values. As we saw in Section 5.2,
while the parameter estimates may not necessarily be poor, the reliability provided by the
standard errors is incorrect.

Figure 16: Residual/Model (
rj

f(tj ,θ̂)
) plots of the GLS estimation to NCV data (ǫj =

Yj−f(tj ,~θ0)

f(tj ,~θ0)
); Left: nontruncated, Right: truncated.

0 10 20 30 40 50 60
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
GLS estimation with NCV Data

Time t
j
 (months)

R
e

si
d

u
a

l/M
o

d
e

l 

0 2 4 6 8 10 12
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
GLS estimation with NCV Data

Time t
j
 (months)

R
e

si
d

u
a

l/M
o

d
e

l 

80 100 120 140 160 180 200 220 240 260 280
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
GLS estimation with NCV Data 

Model f(t
j
, θ)

R
e

si
d

u
a

l/M
o

d
e

l 

80 100 120 140 160 180 200 220 240 260 280
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
GLS estimation with NCV Data 

Model f(t
j
, θ)

R
e

si
d

u
a

l/M
o

d
e

l 

When the GLS estimator is used appropriately, however, the randomness of the error
plots suggest reasonability of assumptions, as seen in Figure 16. Here, the error in the
data has been generated proportional to the model values, and therefore, not longitudinally

constant. So when we plot the ratios
yj−f(tj ,θ̂)

f(tj ,θ̂)
, we allow for this dependence and see the

random patterns we would expect when plotting realizations of a random variable. Again,
the vertical bands seen in the bottom left panel indicate repeated model values, as can be
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seen by the bottom right panel, where the repetitions have been excluded from the data set.

5.3 Inverse Problem Results: Australian Surveillance Data

Using the iterative weighted least squares procedure described in Section 2.4.2, we carried
out inverse problem calculations with the model and observations as outlined in the previous
section using Australian IPD data in place of the simulated data. In this case we assumed
constant variance noise in the data and hence used WLS , e.g., see (27), for our estimation
procedure. Details are given in [32]. We discuss here the case where we used data for the
period 2002-2004 (36 months of monthly data n1 = 36, and n2 = 6 of annual vaccinated or

unvaccinated cases) and estimated ~θ = (β, κ0, κ1, δ)
T along with σ1, σ2 in a weighted least

squares (WLS) functional

J42(~θ, σ
2
1, σ

2
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1
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As usual, we assume there exists a ‘true’ parameter ~θ0 which generated the data, and our
statistical model is then given by

Y
(1)
j ≡ f (1)(tj, ~θ0) + ǫ

(1)
j j = 1, ..., 36, (65)

Y
(2)
k ≡ f (2)(tk, ~θ0) + ǫ

(2)
k k = 1, 2, 3, (66)

Y
(3)
k ≡ f (3)(tk, ~θ0) + ǫ

(3)
k k = 1, 2, 3. (67)

The errors (ǫ
(i)
j in (65) - (67) for i = 1, 2, 3) in the above model are assumed to be

random variables with means E[ǫ
(i)
j ] = 0 and constant variances var(ǫ

(i)
j ) = σ2

0,i, where
σ0,1 = σ1, σ0,2 = σ0,3 = σ2 are unknown. Thus we have assumed that the size of the errors
committed at each time for a given kind of “measurement” is constant and also does not
depend on the magnitude of the measurement itself. We also assume that ǫ

(i)
j are independent

and identically distributed (i.i.d.) random variables for each fixed i. The observations and
the model quantities are related by

• Y
(1)
j ∼ f (1)(tj, ~θ) =

∫ tj+1

tj
[κ(s)E(s) + δκ(s)EV (s)] ds for j = 1, 2, .., 36 (monthly cases),

• Y
(2)
k ∼ f (2)(tk, ~θ) =

∫ tk+1

tk
κ(s)E(s)ds for k = 1, 2, 3 (yearly unvaccinated cases),

• Y
(3)
k ∼ f (3)(tk, ~θ) =

∫ tk+1

tk
δκ(s)EV (s)ds for k = 1, 2, 3 (yearly vaccinated cases).

The data fits in Figure 17 reveal that the model solution with the parameters shown in Table
7 fits the Australian surveillance data from 2002-2004, with the top panel showing the fit to
the monthly case notification data, the bottom left panel the unvaccinated cases reported
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Table 7: Model calibration to Australian IPD data from 2002-2004; estimation of ψ̂ =
(θ̂, σ̂1, σ̂2)

T = (β̂, κ̂0, κ̂1, δ̂, σ̂1, σ̂2)
T .

ψ ψ̂ SE(θ̂)
β 1.52175 0.02
κ0 1.3656e−3 1.3e−4

κ1 0.56444 0.04
δ 0.7197 0.06
σ1 28.924
σ2 86.386

annually, and the bottom right the annual vaccinated cases. The model solution and data
agree well, and parameter values are on the scale of our initial guesses, although their values
differ slightly to minimize the cost function in the functional (64). Further, the standard
errors are relatively small and suggests that the estimates obtained here are reliable.

Figure 17: Best fit solution to Australian IPD data with parameters shown in Table 7. Top
panel: monthly cases; bottom left panel: annual unvaccinated cases; bottom right panel:
annual vaccinated cases.
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To test the assumptions of the statistical model that we have chosen to represent our
data, we plotted the residuals between the model and observations as a function of the model,
that is, rj = y

(1)
j − f (1)(tj, θ̂) vs. the model values f (1)(tj, θ̂) (Figure 18). The lack of a clear

relationship between these two quantities suggests that our assumptions are reasonable and
the residuals of each observation do not depend on the model values. However, we see six
groups of points, which can be explained by the oscillatory pattern of the infections. In
the top panel we have plotted just one half of the period of the infection rate and see a
completely random pattern, indicating no relationship among these quantities. When we
extend this time period for another half of a period, thus plotting an entire period in the
middle panel, we see that there are two points in each group of points. Thus, the pattern
observed is driven by the seasonality of the infections and not by any incorrect assumptions.
On the contrary, only a pattern in the dependent variable (the residuals) would suggest that
incorrect assumptions have been made. This analysis suggests that it is reasonable to assume
constant variance among observations of the same type, providing support for the statistical
model underlying the parameter estimation procedure.

Figure 18: Residuals as a function of model values. Top panel is over the period January
2003 through June 2003, middle panel is for January 2003 through December 2003, and
bottom panel is for all three years.

50 100 150 200 250 300
−2

0

2

monthly IPD cases−model values

R
e

s
id

u
a

ls

50 100 150 200 250 300
−2

0

2

monthly IPD cases−model values

R
e

s
id

u
a

ls

50 100 150 200 250 300 350
−2

0

2

monthly IPD cases−model values

R
e

s
id

u
a

ls

37



6 Sensitivity Functions

The sensitivity matrices χ = F~θ introduced in Section 3 to define covariances for sampling
distributions and associated standard errors are actually well known in the applied mathe-
matics and engineering literature, where they arise in routine sensitivity analysis.

In actuality, sensitivity analysis is an ensemble of techniques [30] that can provide infor-
mation on parameter dependent model behavior, yielding a much better understanding of
the underlying mathematical model with a resulting marked improvement in the estimation
results obtained using the models in simulations and inverse problems. Traditionally, sen-
sitivity analysis referred to a procedure used in simulation studies (direct problems) where
one evaluated the effects of parameter variations on the time course of model outputs and
identified the parameters or the initial conditions to which the model is most/least sensitive.
In recent years however, investigators’ attention has also recently turned to the sensitivity
of the solutions to inverse problems with respect to data, in a quest for optimal selection
of data measurements in experimental design. As part of model validation and verification,
one typically needs to estimate model parameters from data measurements, and a related
question of paramount interest is related to sampling; specifically, at which time points the
measurements are most informative in the estimation of a given parameter. Due to the
fact that in practice the components of the parameter estimates are often correlated, tradi-
tional sensitivity functions (TSF) used alone are not very efficient in answering this question
because TSF do not take into account how model output variations affect parameter esti-
mates in inverse problems. Investigators [11, 34] recently proposed a new class of sensitivity
functions, called generalized sensitivity functions (GSF), which provide information on the
relevance of measurements of output variables of a system for the identification of specific
parameters. For a given set of time observations, Thomaseth and Cobelli use theoretical
information criteria (the Fisher information matrix) to establish a relationship between the
monotonicity of the GSF curves with respect to the model parameters and the information
content of these observations. Here our interest is in how to use this information content tool
along with TSF to improve data collection for estimation of parameters in inverse problems.
It is, of course, intuitive that sampling more data points from the region indicated by the
GSF to be the “most informative” with respect to a given parameter would result in more
information about that parameter, and therefore provide more accurate estimates for it.

To define and discuss these sensitivity functions we consider the general mathematical
model (1) with N -vector solutions ~x depending on p-vector parameters ~θ.

6.1 Traditional Sensitivity Functions

Traditional sensitivity functions (TSF) are classical sensitivity functions used in mathemat-
ical modeling to investigate variations in the output of a model resulting from variations in
the parameters and the initial conditions.

In order to quantify the variation in the state variable ~x(t) with respect to changes in

the parameter ~θ and the initial condition ~x0, we are naturally led to consider traditional
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sensitivity functions (TSF) as defined by the derivatives

~sθk
(t) =

∂~x

∂θk

(t), k = 1, . . . , p, (68)

and

~rx0l
(t) =

∂~x

∂x0l

(t), l = 1, . . . , N, (69)

where x0l is the l-th component of the initial condition ~x0. If the function ~g is sufficiently
regular, the solution ~x is differentiable with respect to θk and x0l, and therefore the sensitivity
functions ~sθk

and ~rx0l
are well defined.

In practice, the model under investigation often is sufficiently simple to allow one to
compute analytically the sensitivity functions (68) and (69). This is precisely the case (see
(55)) with the logistic growth population example of (54) to be discussed below. However,
when one deals with a more complex model, as with the epidemiological example of Section
5, it is often preferable to consider these sensitivity functions separately for clarity purposes.

The sensitivity functions are local in nature because they are defined by partial derivatives
which have a local character. Thus sensitivity and insensitivity (i.e., ~sθk

= ∂~x/∂θk very close

to zero) depend on the time interval, the state values ~x, and the values of ~θ for which they
are considered. For example in a certain time subinterval we might find that ~sθk

is small so
that the state variable ~x is insensitive to the parameter θk on that particular interval. The
same function ~sθk

can take large values on a different subinterval, indicating that the state
variable ~x is quite sensitive to the parameter θk on the latter interval. From the sensitivity
analysis theory for dynamical systems, one finds (e.g., see (48)) that s = (~sθ1

, . . . , ~sθp
) is an

N × p vector function that satisfies the matrix ODE system

ṡ(t) = ~g~x(t, ~x(t), ~θ)s(t) + ~g~θ(t, ~x(t),
~θ), (70)

s(t0) = 0N×p,

so that the dependence of s on (t, ~x(t)) as well as ~θ is readily apparent. Here we have

used ~g~x = ∂~g/∂~x and ~g~θ = ∂~g/∂~θ to denote the derivatives of ~g with respect to ~x and ~θ,
respectively.

The sensitivity functions with respect to the components of the initial condition ~x0 define
an N ×N vector function r = (~rx01

, . . . , ~rx0N
), which satisfies the matrix system

ṙ(t) = ~g~x(t, ~x(t), ~θ)r(t), (71)

r(t0) = IN×N .

Equations (70) and (71) can be used in conjunction with equation (1) to numerically com-
pute the sensitivities s and r for general cases when the function ~g is sufficiently complicated
to prohibit an analytical solution.

In many cases the parameters have different units and the state variables may have
varying orders of magnitude, and thus in practice it is sometimes more convenient to work
with the scaled versions of the TSF, referred to as relative sensitivity functions (RSF).
However, here we will focus solely on the non-scaled sensitivities, i.e., TSF.
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6.2 Generalized Sensitivity Functions

Recently generalized sensitivity functions were proposed by Thomaseth and Cobelli [34] as
a new tool in identification studies to analyze the distribution of the information content
(with respect to the model parameters) of the output variables of a system for a given set
of observations. These are formulated in the context of an OLS inverse problem framework
in [11, 34].

We consider here a scalar observation model with discrete time measurements. When
m = 1 and C is a 1×N array in (4)), the generalized sensitivity functions (GSF) are defined
as

gs(tl) =
l
∑

i=1

1

σ2(ti)
[F−1 ×∇~θf(ti, ~θ0)] • ∇~θf(ti, ~θ0), (72)

where {tl}, l = 1, . . . , n are the times when the measurements are taken,

F =
n
∑

j=1

1

σ2(tj)
∇~θf(tj, ~θ0)∇~θf(tj, ~θ0)

T (73)

is the corresponding p × p Fisher information matrix and σ2(tj) is the observation time
dependent variance. The symbol “•” represents element-by-element vector multiplication
(for motivation and details which lead to the definition above, the interested reader may
consult [11, 34]). The Fisher information matrix measures the information content of the
data corresponding to the model parameters. In (72) we see that this information is contained
in the GSF, making them appropriate tools to indicate the relevance of the measurements
to estimation of a parameter in inverse problems.

We observe that the generalized sensitivity functions (72) are vector-valued functions

with the same dimension as ~θ. The k-th component gsk of the vector function gs represents
the generalized sensitivity function with respect to θk. The GSF in (72) are defined only
at the discrete time points {tj, j = 1, . . . , n} and they are cumulative functions involving
at time tl only the contributions of those measurements up to and including tl; thus gsk

calculates the influence of measurements up to tl on the parameter estimate for θk.
It is readily seen from the definition that all the components of gs are one at the final

time point tn, i.e., gs(tn) = 1. If one defines gs(t) = 0 for t < t1 (naturally, gs is zero when
no measurements are collected), then each component of gs transitions (not necessarily
monotonically) from zero to one. As developed in [11, 34], the time subinterval during which
the change in gsk has the sharpest increase corresponds to the observations which provide the
most information in the estimation of θk. That is, regions of sharp increases in gsk indicate
a high concentration of information in the data about θk. Thus, the utility of these functions
in design of experiments is rather obvious.

The numerical implementation of the generalized sensitivity functions (72) is straight-

forward, since the gradient of f with respect to ~θ (or ~x0) is simply the Jacobian of ~x with

respect to ~θ (or ~x0) multiplied by the observation operator C. These Jacobian matrices can
be obtained by numerically solving the sensitivity ODE system (70) or (71) coupled with the
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system (1). One would need to use this approach to compute the GSF for the epidemiological
model of Section 5. For the the logistic model used below to illustrate ideas, the solution of
equation (54) given by (55) is sufficiently simple to permit an analytical representation of
the Jacobians.

6.3 TSF and GSF for the Logistic Equation

The Verhulst-Pearl logistic equation (54) is a relatively simple example with easily deter-
mined dynamics that is useful in demonstrating the utility of the traditional sensitivity
functions as well as the generalized sensitivity functions in inverse problems (see [2, 4] for
more discussions on TSF and GSF for this example). Unless data are sampled from regions
with changing dynamics, it is possible that some of the parameters will be difficult to es-
timate. Moreover, the parameters that are obtainable may have high standard errors as a
result of introducing redundancy in the sampling region (this is illustrated in [2]). In order to
investigate sensitivity for the logistic growth example, we will examine varying behavior in
the model depending on the region from which tj is sampled. We consider points τ1 and τ2,
as depicted in Figure 19, partitioning the logistic solution curve into three distinct regions:
0 < tj < τ1, τ1 < tj < τ2, and τ2 < tj < T , with T sufficiently large for our solution to be
near its asymptote x = K. Based on the changing dynamics of the curve in Figure 19, we
expect differences in the ability to estimate parameters depending on the region in which
the solution is observed.

Figure 19: Regions with different growth in the Verhulst-Pearl solution curve.
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We consider the logistic model with true parameters ~θ0 = (17.5, 0.7, 0.1). We analyze the
TSF corresponding to each parameter in the initial region of the curve, where the solution
approaches x0 as t→ 0. When we consider the initial region of the curve, where 0 < tj < τ1
for j = 1, . . . , n, we have

∂x(tj)

∂K
≈ 0,

∂x(tj)

∂r
≈ 0,

∂x(tj)

∂x0

≈ 1;
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this follows from considering the limits of the readily computed analytical sensitivity func-
tions as t → 0. Based on these analytical findings, which indicate low sensitivities with
respect to K and r, we expect to have little ability to determine these parameters when we
sample data from [0, τ1]; however we should be able to estimate x0. This is confirmed by the
computational examples in [2, 4].

We next consider the region of the curve which is near the asymptote at x = K, in this
case for τ2 < tj < T , j = 1, . . . , n. Here we find that by considering the limits as t→ ∞, we
have the approximations

∂x(tj)

∂K
≈ 1,

∂x(tj)

∂r
≈ 0,

∂x(tj)

∂x0

≈ 0.

Based on these approximations, we expect to be able to estimate K well when we sample
data from [τ2, T ]. However, using data only from this region, we do not expect to be able
to estimate very well either x0 or r. Again these expectations are readily confirmed by the
inverse problem calculations presented in [2, 4].

Finally, we consider the part of the solution curve where τ1 < tj < τ2 for j = 1, . . . , n
and where it has nontrivially changing dynamics. We find that the partial derivative values
differ greatly from the values in regions [0, τ1] and [τ2, T ]. When [τ1, τ2] is included in the
sampling region we expect to recover good estimates for all three parameters (expectations
that are met in [2, 4]).

Figure 20: (a) TSF and (b) GSF corresponding to each parameter for the logistic curve with
~θ0 = (17.5, 0.7, 0.1).
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Our analytical observations are fully consistent with information contained in the graphs
of the TSF illustrated in Figure 20(a) for T = 25. We note that the curve sK slowly increases
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with time and it appears that the solution is insensitive to K until around the flex point of
the logistic curve, which occurs shortly after t = 7 in this case. The sensitivities sK and sr

both are close to zero when t is near the origin, and hence we deduce that both K and r
will be difficult or impossible to obtain using data in that region. Also, we observe that sx0

and sr are nearly zero in [15,25], which suggests that we will be unable to estimate x0 or r
using observations in that region.

We numerically computed the GSF using equation (72) with σ = 1 and the true value

parameters ~θ0 = (17.5, 0.7, 0.1). The plots of these functions are shown in Figure 20(b) where
one can observe obvious regions of steep increase in each curve. For the curves gsx0

(t), gsr(t)
and gsK(t), we find by visual inspection that these regions are approximately [4.5, 7.5], [7, 11]
and [12, 25], respectively. By the generalized sensitivity theory, if we increase the number of
data points sampled in one of these regions, the estimation of the corresponding parameter
is expected to improve. This is precisely what happens in the computational examples found
in [2, 4].

While the general algorithms are still under development, the following scenario involving
TSF and GSF in design of experiments for data to be used in OLS and GLS formulations
are envisioned:

1. One proposes a mechanism, interaction, etc., as represented by a term or terms (such as
a nonlinearity, probability distribution, etc.) in a model (ODE, PDE, etc.). One then
uses methodology based on the TSF, GSF and the Fisher Information Matrix (FIM)
calculations to suggest design of experiments to collect data (duration of experiment,
sampling sizes, frequency in time, space, age/size class, etc.) to be used in inverse
problem/parameter estimation techniques to investigate the mechanistic based terms.

2. One then designs and carries out the experiments resulting from 1. with guidance in
data collection (variables required to be observed, sampling frequency, measurement
accuracy needed, etc) being provided for each class of models to be used with the data;
questions and models usually will be driven by mechanism based formulation.

3. Finally, one can carry out post experimental modeling analysis (parameter estimation
and inverse problems with both OLS and GLS , statistical analysis of variance in
data and model fits with residual plots, hypothesis testing and model comparison as
described in the next several sections, Kullback-Leibler distance based and information
content based model selection techniques such as AIC and recent generalizations [16, 17]
and improvements, etc.) to provide a modeling framework and methodology for future
investigations of the type proposed here. In the post analysis one can also carry out
verification and validation type studies as well as testing predictive capabilities. This
can be done in part by comparing the models with data that was not used in the inverse
problems for estimation of parameters.
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7 Statistically Based Model Comparison Techniques

In previous sections we have discussed techniques (e.g., residual plots) for investigating cor-
rectness of the assumed statistical model underlying the estimation (OLS or GLS) procedures
used in inverse problems. To this point we have not discussed correctness issues related to
choice of the mathematical model. However there are a number of ways in which questions
related to the mathematical model may arise. In general, modeling studies [7, 8] can raise
questions as to whether a mathematical model can be improved by more detail and/or fur-
ther refinement? For example, one might ask whether one can improve the mathematical
model by assuming more detail in a given mechanism (constant rate vs. time or spatially
dependent rate – e.g., see [1] for questions related to time dependent mortality rates during
sub-lethal damage in insect populations exposed to various levels of pesticides). Or one
might question whether an additional mechanism in the model might produce a better fit
to data–see [5, 6, 7] for diffusion alone or diffusion plus convection in cat brain transport in
grey vs. white matter considerations.

Before continuing an important point must be made: In model comparison results out-
lined below, there are really two models being compared: the mathematical model and the
statistical model. If one embeds the mathematical model in the wrong statistical model (for
example, assumes constant variance when this really isn’t true), then the mathematical model
comparison results using the techniques presented here will be invalid (e.g., worthless). An
important remark in all this is that you must have the mathematical model you want to
simplify or improve (e.g., test whether V = 0 or not in the example below) embedded in the
correct statistical model (determined in large part by the observation process), so that the
comparison really is only with regard to the mathematical model.

To provide specific motivation, we illustrate the formulation of hypothesis testing by
considering a mathematical model for a diffusion-convection process. This model was pro-
posed for use with experiments designed to study substance (labeled sucrose) transport in
cat brains, which are heterogeneous, containing grey and white matter [7]. In general, the
transport of substance in cat’s brains can be described by a PDE describing change in time
and space. This convection/diffusion model, which is widely discussed in the applied math-
ematics and engineering literature, has the form

∂u

∂t
+ V ∂u

∂x
= D∂

2u

∂x2
. (74)

Here, the parameter ~θ = (D,V), which belongs to some admissible parameter set Θ, denotes
the diffusion coefficient D and the bulk velocity V of the fluid, respectively. Our problem:
test whether the parameter V plays a significant role in the mathematical model. That is,
if the model (74) represents a diffusion-convection process, we seek to determine whether
diffusion alone or diffusion plus convection best describes transport phenomena represented
in cat brain data sets {yij} for {u(ti, xj; ~θ)}, the concentration of labeled sucrose at times
{ti} and location {xj}. We then may take H0 : V = 0 and the alternative HA : V 6= 0.
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Consequently, the restricted parameter set ΘH ⊂ Θ defined by

ΘH = {~θ ∈ Θ : V = 0}

will be important. To carry out these determinations, we will need some model comparison
tests of analysis of variance (ANOVA) type from statistics involving residual sum of squares
(RSS).

7.1 RSS Based Statistical Tests

In general, we assume an inverse problem with mathematical model f(t, ~θ) and n observations
~Y = {Yj}n

j=1. We define an OLS performance criterion

Jn(~θ) = Jn(~Y , ~θ) =
1

n

n
∑

j=1

[Yj − f(tj, ~θ)]
2,

where our statistical model again has the form

Yj = f(tj, ~θ0) + ǫj, j = 1, . . . , n,

with {ǫj}n
j=1 independent and identically distributed, E(ǫj) = 0 and constant variance

var(ǫj) = σ2. As usual ~θ0 is the “true” value of ~θ which we assume to exist. As noted

above, we use Θ to represent the set of all the admissible parameters ~θ and assume that Θ
is a compact subset of Euclidean space of Rp with ~θ0 ∈ Θ.

Let θn(~Y ) = θn
OLS(~Y ) be the OLS estimator using Jn with corresponding estimate θ̂n =

θn
OLS(~y) for a realization ~y = {yj}. That is,

θn(~Y ) = arg min
~θ∈Θ

Jn(~Y , ~θ) and θ̂n = arg min
~θ∈Θ

Jn(~y, ~θ).

Remarks: In most calculations, one actually uses an approximation fN to f , often a
numerical solution to the ODE or PDE for modeling the dynamical system. Here we tacitly
assume fN will converge to f as the approximation improves. There are also questions related
to approximations of the set Θ when it is infinite dimensional (e.g., in the case of function
space parameters such as time or spatially dependent parameters) by finite dimensional
discretizations ΘM . For extensive discussions related to these questions, see [8] as well as [6]
where related assumptions on convergences fN → f and ΘM → Θ are given. We shall ignore
these issues here, keeping in mind that these approximations will also be of importance in
the methodology discussed below in most practical uses.

In many instances, including the motivating example given above, one is interested in
using data to address the question whether or not the “true” parameter ~θ0 can be found in
a subset ΘH ⊂ Θ which we assume for discussions here is defined by

ΘH = {~θ ∈ Θ|H~θ = c} (75)
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where H is an r × p matrix of full rank, and c is a known constant.
In this case we want to test the null hypothesis H0: ~θ0 ∈ ΘH .
Define then

θn
H(~Y ) = arg min

~θ∈ΘH

Jn(~Y , ~θ) and θ̂n
H = arg min

~θ∈ΘH

Jn(~y, ~θ)

and observe that Jn(~Y , θ̂n
H) ≥ Jn(~Y , θ̂n). We define the related non-negative test statistics

and their realizations, respectively, by

Tn(~Y ) = n(Jn(~Y , θn
H) − Jn(~Y , θn)) and T̂n = Tn(~y) = n(Jn(~y, θ̂n

H) − Jn(~y, θ̂n)).

One can establish asymptotic convergence results for the test statistics Tn(~Y ), as given
in detail in [6]. These results can, in turn, be used to establish a fundamental result about
much more useful statistics for model comparison. We define these statistics by

Un(~Y ) =
Tn(~Y )

Jn(~Y , θn)
, (76)

with corresponding realizations Ûn = Un(~y). We then have the asymptotic result that is the
basis of our ANOVA–type tests.

Under reasonable assumptions (very similar to those required in the asymptotic sampling
distribution theory discussed in previous sections–see [6, 8, 31]) involving regularity and the
manner in which samples are taken, one can prove [6]:

(a) We have the estimator convergence θn −→ ~θ0 as n→ ∞ with probability one;

(b) If H0 is true, Un
D−→ U(r) as n → ∞ where U ∼ χ2(r), a χ2 distribution with r

degrees of freedom.

An example of the χ2 density is depicted in Figure 21 where the density for χ2(4) (χ2

with r = 4 degrees of freedom) is graphed.

Figure 21: Example of U ∼ χ2(4) density

In this figure two parameters (τ, α) of interest are shown. For a given value τ , the value
α is simply the probability that the random variable U will take on a value greater than α.
That is, Prob{U > τ} = α where in hypothesis testing, α is the significance level and τ is
the threshold.
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We wish to use this distribution to test the null hypothesis, H0, where we approximate
by Un ∼ χ2(r). If the test statistic, Ûn > τ , then we reject H0 as false with confidence
level (1−α)100%. Otherwise, we do not reject H0 as true. For cat brain problem, we use a
χ2(1) table, which can be found in any elementary statistics text or online and is given here
for illustrative purposes.

Table 8: χ2(1)

α τ confidence
.25 1.32 75%
.1 2.71 90%
.05 3.84 95%
.01 6.63 99%
.001 10.83 99.9%

7.1.1 p-values

The minimum value α∗ of α at which H0 can be rejected is called the p-value. Thus, the
smaller the p-value, the stronger the evidence in the data in support of rejecting the null
hypothesis and including the term in the model, i.e., the more likely the term should be in
the model. We implement this as follows: Once we compute Ûn = τ̄ , then p = α∗ is the value
that corresponds to τ̄ on a χ2 graph and so, we reject the null hypothesis at any confidence
level, c, such that c < 1 − α∗. For example, if for a computed τ̄ we find p = α∗ = .0182,
then we would reject H0 at confidence level (1 − α∗)100% = 98.18% or lower. For more
information, the reader can consult ANOVA discussions in any good statistics book.

7.1.2 Alternative statement

To test the null hypothesis H0, we choose a significance level α and use χ2 tables to obtain
the corresponding threshold τ = τ(α) so that P (χ2(r) > τ) = α. We next compute Ûn = τ
and compare it to τ . If Ûn > τ , then we reject H0 as false; otherwise, we do not reject the
null hypothesis H0.

7.2 Revisiting the cat-brain problem

We summarize use of the above model comparison techniques outlined above by returning
to the cat brain example discussed in detail in [7, 8]. There were 3 sets of experimental data
examined, under the null-hypothesis H0 : V = 0.

For the Data Set 1, we found after carrying out the inverse problems over Θ and ΘH ,
respectively,

Jn(θ̂n) = 106.15 and Jn(θ̂n
H) = 180.1,
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which gives us that Ûn = 5.579 (noting that n = 8 6= ∞), for which p = α∗ = .0182. Thus,
we reject H0 in this case at any confidence level less than 98.18%. Thus, we should reject
that V = 0, which suggests convection is important in describing this data set.

For Data Set 2, we found

Jn(θ̂n) = 14.68 and Jn(θ̂n
H) = 15.35,

and thus, in this case, we have Ûn = .365, which implies we do not reject H0 with high degrees
of confidence (p-value very high). This suggests V = 0, which is completely opposite to the
findings for Data Set 1.

For the final set (Data Set 3) we found

Jn(θ̂n) = 7.8 and Jn(θ̂n
H) = 146.71,

which yields in this case, Ûn = 15.28. This, as in the case of the first data set, suggests (with
p < .001) that V 6= 0 is important in modeling the data.

The difference in conclusions between the first and last sets and that of the second set
is interesting and perhaps at first puzzling. However, when discussed with the doctors who
provided the data, it was discovered that the first and last set were taken from the white
matter of the brain, while the other was taken from the grey matter. This later finding was
consistent with observed microscopic tests on the various matter (micro channels in white
matter that promote convective “flow”). Thus, it can be suggested with a reasonably high
degree of confidence, that white matter exhibits convective transport, while grey matter does
not.
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8 Epi Model Comparison

We return to the previously introduced epidemiological model as another example of a way in
which the model comparison statistic may be used. Here we apply this statistic to determine
whether a more sophisticated model is appropriate based on the surveillance data from the
Australian NNDS website. Here we introduce the modified model and describe the test
statistic for this example. We then present the results from the least squares estimation
procedure in both the cases of the simplified and more complex model, and finally, interpret
the conclusions indicated by the test statistic.

So far, in our model of invasive pneumococcal disease dynamics, we have considered the
progression of individuals from a colonized to an infected state by a constant linear per capita
rate. However, this is a gross simplification of more complex physiological processes, many
of which occur within the individual and would likely require more sophisticated mathemat-
ical representations. But it is also possible that at a population level, this linear term may
sufficiently capture the dynamics of the infections when the model solutions are compared
with observed data. One specific mechanism that we can explicitly consider is ‘exogenous
reinfection’, that is, the establishment of an infection within a colonized individual through
repeated exposure to S. pneumoniae via contacts with other individuals harboring the bac-
teria. The inclusion of this mechanism results in the following modified model equations

dS

dt
= λ− β1S

E + EV + I + IV
N

+ αE + γI − φS + ρSV − µS (77)

dE

dt
= β1S

E + EV + I + IV
N

− αE − lκ(t)E − φE + ρEV − µE − lβ2E
E + EV + I + IV

N
(78)

dSV

dt
= φS − ǫβ1SV

E + EV + I + IV
N

+ αEV + γIV − ρSV − µSV (79)

dEV

dt
= ǫβ1SV

E + EV + I + IV
N

− αEV + φE − ρEV − δκ(t)EV

− µEV − δβ2
E + EV + I + IV

N
(80)

dI

dt
= lκ(t)E + lβ2E

E + EV + I + IV
N

− (γ + η + µ)I (81)

dIV
dt

= δκ(t)EV + δβ2
E + EV + I + IV

N
− (γ + η + µ)IV . (82)

8.1 Surveillance Data

Our interpretation of the case notification data must also be modified to reflect the additional
infection mechanism, so that the number of new cases is now
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Yj ∼ f(tj, ~θ) =

∫ tj+1

tj

[lκE + lβ2E
E + EV + I + IV

N
+ δκEV

+ δβ2EV
E + EV + I + IV

N
]ds,

where j = 1, ..., 36. We estimate parameters ~θ = (β1, κ0, κ1, δ, β2)
T now from these 36

monthly cases, and from the corresponding annual reports of which of these cases were
vaccinated or unvaccinated. These data are represented by

Yi ∼ f(ti, ~θ) =

∫ ti+1

ti

[

lκE + lβ2E
E + EV + I + IV

N

]

ds,

and

Yi ∼ f(ti, ~θ) =

∫ ti+1

ti

[

δκEV + δβ2EV
E + EV + I + IV

N

]

ds,

for i = 1, 2, 3, and ti = 1, 13, 25, 37 months for i = 1, . . . , 4. Again, we assume the statistical
model Yj = f(tj, ~θ0) + ǫj where E[ǫj] = 0, var(ǫj) = σ2

1 for all j = 1, ..., 36, and Yi =

f(ti, ~θ0) + ǫi where E[ǫi] = 0, var(ǫi) = σ2
2 for all i = 1, 2, 3. Thus, we have assumed that

the variance is constant longitudinally, but not equivalent across types of observations. That
is, it is likely that there is more variation in the annually reported observations than those
reported on a monthly basis. The least squares estimation procedure is described in more
detail in [32].

8.2 Test Statistic

Here we describe the application of a test statistic to this example to compare the modified
model to the comparably simpler model. The statistic will provide a basis from which to
decide whether the observed data warrants the additional complexity incorporated in the
above model.

From the n = 42 observations Yj approximated by the model quantities f(tj, ~θ), we seek

to estimate parameters ~θ = (β1, κ0, κ1, δ, β2)
T . We obtain these estimates via a least squares

estimation process in which our estimate for ~θ minimizes an objective functional Jn(~θ). When

f(tj, ~θ) is that for the more sophisticated model above,

θ̂ = arg min
~θ∈Θ

Jn(~θ),

where Θ ⊂ R
5
+ is a (compact) feasible parameter set. The constraint operator H : R

5 → R
1

of (75) for our example is then the 1 × 5 vector H = (0, 0, 0, 0, 1) and c = 0.
Thus the reduced parameter space (in the case of the reduced model, where β2 = 0), is
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Table 9: Parameter estimates without and with ‘exogenous reinfection’.

~θ θ̂H SE(θ̂H) θ̂ SE(θ̂)
(β2 = 0) (β2 6= 0)

β 1.52175 0.02 1.52287 0.0029
κ0 1.3656e−3 1.3e−4 1.3604e−3 0.0012
κ1 0.56444 0.04 0.5632 0.52
δ 0.7197 0.06 0.71125 0.38
β2 N/A N/A 2.2209e−14 0.01

ΘH = {~θ ∈ Θ : H~θ = 0} = {~θ ∈ Θ : β2 = 0}.
The estimate for ~θ over ΘH is denoted by θ̂H , and is found by minimizing the same

objective functional over the smaller parameter space ΘH , i.e.,

θ̂H = arg min
~θ∈ΘH

Jn(~θ).

We use the test statistic

Un = n
Jn(θ̂H) − Jn(θ̂)

Jn(θ̂)

which, under reasonable conditions, converges to a χ2(1) distribution. For a significance
level α, we would find a threshold τ such that Pr{χ2(1) > τ} = α. Then if Un > τ , we
reject our null hypothesis as false, otherwise we do not reject. Our null hypothesis in this
case is H0 : K~θ0 = 0, or that the true β2 = 0.

8.3 Inverse Problem Results

In this section we compare the results of the least squares estimation procedure with and
without the ‘exogenous reinfection’ term. The same set of surveillance data, described in
Section 8.1, is used in both cases. The parameter estimates and corresponding standard
errors are shown in Table 9.

The parameter estimates themselves, θ̂H and θ̂, do not differ significantly. Although,
the standard errors indicate that our ability to estimate β and κ(t) does change drastically
depending on whether or not the two mechanisms of infection are considered. When the
reinfection term is considered, we see that the standard error for this particular parameter
indicates that our data do not provide a significant amount of information on this process.
However, the smaller residual, RSS, when the objective functional is minimized over a
larger parameter space (when β2 6= 0), might indicate that including the extra term provides
a better fit. To resolve these two seemingly contrasting pieces of information, we turn to the
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Figure 22: Best fit model solutions to monthly case notifications with constant variance
error.
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test statistic to determine if the difference in residuals is enough to justify the inclusion of
this extra infection rate.

8.4 Model Comparison

The test statistic can be calculated as

Un = n
Jn(θ̂H) − Jn(θ̂)

Jn(θ̂)
= 42 × 4, 244.5 − 4, 220.8

4, 220.8
= 0.236.

Note that the residual sum of squares is the value of the objective function, so that RSS =
Jn(θ̂). We compare this to a χ2(1) table (see Table 8) and see that even at a significance
level of only 75% we cannot reject our null hypothesis. That is, the difference in residuals,
and hence the improvement of the model fits to this data (with n = 42), is not sufficient to
warrant including the additional infection mechanism. This does not mean that reinfection
does not occur, but it does suggest that to accurately capture the dynamics of the population,
as evidenced by this surveillance data, it is reasonable to neglect this term. Therefore, we
conclude that “reinfection” is not sufficiently present in this data to argue for inclusion of
this term in population level models of the infection dynamics.
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9 Concluding Remarks

As might be expected, mathematical and statistical models cannot fully represent reality
in most scientific situations. The best that one can hope is that models can approximate
reality as presented by data from experiments sufficiently well to be useful in promoting basic
understanding as well as prediction. We have in this presentation outlined some techniques
for evaluation of assumptions regarding statistical models as well as comparison techniques
for mathematical models under the assumption that the statistical model assumed is correct.
The RSS based techniques discussed represent just one (which happens to enjoy a rigorous
theoretical foundation!) of many model comparison/selection techniques available in a large
literature. For example, among a wide class of so-called “model selection” methods (some of
which are heuristic in nature) are those based on Kullbeck-Leibler information loss. Among
the best known of these is the Akaike’s Information Criterion (AIC) selection procedure and
its numerous variations (AICc,TIC, etc.) [13, 14, 15, 16, 17, 28] as well as Bayesian model
selection (e.g., BIC) procedures. While these are important modeling tools, space limitations
prohibit their discussion here.

Finally, we have also limited our discussions to estimation problems based on OLS and
GLS with appropriate corresponding data noise assumptions of constant variance and non-
constant variance (relative error), respectively. There are many other important approaches
(e.g., regularization, asymptotic embedding, perturbation, equation error, adaptive filtering
and identification, and numerous Bayesian based techniques–see [8, 12, 20, 23, 27, 33, 35]
and the references therein) which again we ignore because of space limitations.
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